Theoretical line profiles, applicable to the analysis of geocoronal H&agr; prifile measurements, are presented for illustrative cases. While retaining a number of simplifications (classical exobase and diffusive equilibrium plasmasphere conditions), distinctive spectral signatures of mechanisms governing the geocorona are isolated. Examining the consequences of solar radiation pressure dynamics is the main point here. In the prototype evaporative case, radiation pressure acts to form narrow profiles via the creation of an extensive quasi-satellite component. Comparison with a simple extension of the earlier analytic theory discloses the influence of an exopause in this regard. The main modifications to evaporative spectral shapes in the geocoronal application, for shadow heights greater than 2 RE, are predicted to be (1) a blueward ''shift'' or bias near line center, for look directions parallel to the antisolar axis, generated by loss mechanisms acting over the time of flight of exospheric constituents (for example, solar ionization) and (2) an enhanced redward wing at spectral displacements exceeding that defined by the shadow height escape speed, produced by plasmaspheric charge exchange collisions. Implications of these results for recent observations of geocoronal H&agr; line profiles are briefly discussed. ¿ American Geophysical Union 1987 |