EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Gosling et al. 1988
Gosling, J.T., Winske, D. and Thomsen, M.F. (1988). Noncoplanar magnetic fields at collisionless shocks: A test of a new approach. Journal of Geophysical Research 93: doi: 10.1029/88JA01102. issn: 0148-0227.

Within the foot and ramp of a fast mode collisionless shock the magnetic field rotates out of the plane of coplanarity defined by the upstream magnetic field and the shock normal. As previously noted (Goodrich and Scudder, 1984), the sense of this rotation is such as to reduce the cross-shock potential drop when measured in the deHoffman-Teller frame relative to that measured in the normal incidence frame. From a consideration of the requirement that there be zero current in the coplanarity plane downstream of the shock, Jones and Ellison (1987) have argued that the field rotation and potential drop difference are a consequence of unequal ion and electron masses, and have derived an expression for the spatial integral of the noncoplanar field component in terms of the electron current within the shock layer. Moreover, by assuming that the ion current within the shock layer is negligible compared to the electron current, they derive equations which predict the magnitude of both the field rotation and the potential drop difference in terms of upstream quantities and the field jump at the shock. We have tested their equations with ISEE 1 and 2 plasma and field measurements at the Earth's bow shock and by means of numerical simulations. We find substantial support for their suggestion that the field rotation and thus also the frame dependence of the potential drop are fundamentally a consequence of unequal ion and electron masses. Further, for subcritical shocks (low Mach number) one can neglect the ion current to predict both the sign and the magnitude of the field rotation and potential drop difference. However, at supercritical shocks (high Mach numbers) the ion current associated with reflected, gyrating ions cannot be neglected, and the final equations of Jones and Ellison seriously underestimate the magnitude of the field rotation and the potential drop difference at these shocks. ¿ American Geophysical Union 1988

BACKGROUND DATA FILES

Abstract

Keywords
Space Plasma Physics, Shock waves, Interplanetary Physics, Planetary bow shocks, Space Plasma Physics, Numerical simulation studies
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit