|
Detailed Reference Information |
Hesse, M. and Birn, J. (1992). MHD modeling of magnetotail instability for anisotropic pressure. Journal of Geophysical Research 97: doi: 10.1029/92JA00793. issn: 0148-0227. |
|
Results of three-dimensional MHD simulations of magnetotail dynamics with anisotropic pressure are presented. The pressure tensor is assumed to be gyrotropic, satisfying a modified double adiabatic approximation including Ohmic heating. It is found that these constraints tend to stabilize the tail with respect to the resistive tearing instability. Including an increasing level of additional isotropization results in a gradual transition to the fast instability found in an isotropic model, which is discussed for comparison. Possible isotropization mechanisms yielding magnetotail instability are discussed also. The stabilizing anisotropies are found primarily in the plasma sheet boundary region. This fact indicates a possibly important role of isotropization mechanisms operating in this region in destabilizing the magnetotail and initiating a tearing instability without the necessity of changes in fluctuation levels in the neutral sheet. ¿ American Geophysical Union 1992 |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Magnetospheric Physics, Storms and substorms, Space Plasma Physics, Magnetic reconnection, Space Plasma Physics, Kinetic and MHD theory, Space Plasma Physics, Numerical simulation studies |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|