A viscoelastic stiffness model of seismicity is developed by introducing a viscoelastic element into the stiffness model for fault dynamics. The introduction of this element permits modeling of transient anelastic deformations in response to stress loading and relaxation and provides a mechanism for partial stress recovery following an earthquake. As a consequence, several phenomena not present in elastic stiffness theory emerge. These include postseismic creep, foreshocks, and aftershocks. Numerical simulations of fault motion also reveal episodes of stable sliding, tertiary creep proceeding earthquakes, and long-term aseismic creep. |