Three different types of seismic data have been examined for seismic events occurring within the zone called the accreted wedge or forearc marginal wedge that underlies the inner trench wall of some arcs. These types of data are (1) teleseismically recorded earthquakes that have been reported in the literature as occurring in major arc-trench regions; these events fail to demonstrate that earthquakes occur within the accreted wedge because the uncertainty of focal depth usually exceeds the depth dimension of the accreted wedge; these data include many tsunamigenic earthquakes, (2) local earthquakes located by combined ocean bottom seismograph and land networks in the arc-trench region in the New Hebrides and the central and eastern Aleutian Trench; none of the more reliable of these hypocenters lies within the accreted wedge; (3) S-P intervals measured at stations on islands located on the outer ridge or at ocean bottom seismograph stations on the forearc marginal wedge; these data do not show the existence of events occurring within the accreted wedge; e.g., from 18 ocean bottom seismograph stations with a cumulative operation time of about 1 year, the smallest S-P time is about 2.5 s for events in the New Hebrides and about 4 s for events in the Adak and Kodiak regions. We found no S-P time smaller than 2 s from 6 years of seismograms recorded at Middleton Island, Alaska, and no S-P time smaller than 4 s from 25 years of seismograms recorded on Barbados. All of the events could have occured outside the forearc marginal wedge. Although we have located no events with hypocenters which are situated unambiguously within the accreted wedge, we have located many events which occurred in the vicinity of the accreted wedge. Some occur in the upper portion of the Benioff zone shallower than about 40 km and others occur in the leading edge of the overriding plate. These locations reported in this paper which are within or close to the seismic networks comprise some of the most reliably located shallow events ever reported in convergent margins of island arcs. The absence of seismic activity within the accreted wedge in any island arc that we studied suggests that the deformation evident in this region occurs aseismically. |