EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Lange & Ahrens 1982
Lange, M.A. and Ahrens, T.J. (1982). Impact induced dehydration of serpentine and the evolution of planetary atmospheres. Journal of Geophysical Research 87: doi: 10.1029/JS087iS01p0A451. issn: 0148-0227.

Shock recovery experiments in the 25 to 45 GPa range on antigorite serpentine determine the amount of shock-induced loss of structural water as a function of shock pressure. Infrared absorption spectra of shock recovered samples demonstrate systematic changes in the amount of structural water and molecular, surface adsorbed water. These yield qualitative estimates of shock-induced water loss and demonstrate that a portion of the shock release structural water is readsorbed on interfacial grain surfaces. Determination of the post-shock water content of the shocked samples relates shock-induced water loss and shock pressure. Based on the present results and theoretical predictions, we conclude that shock pressures of from 20 to ~60 GPa induce incipient to complete water loss, respectively. This result agrees closely with theoretical estimates for total dehydration. The dehydration interval and the activation energies for dehydration in shocked samples decrease systematically with increasing shock pressure as experienced by the sample. We believe the present experiments are applicable to describing dehydration processes of serpentine-like minerals in the accretional environment of the terrestrial planets. We conclude that complete loss of structural water in serpentine could have occurred from accretional impacts of ~3 km/sec when earth and Venus have grown to about 50% of their final size. Accreting planetesimals, impacting Mars, never reached velocities sufficient for complete dehydration of serpentine. Our results support a model in which an impact generated atmosphere/hydrosphere forms while the earth is accreting.

BACKGROUND DATA FILES

Abstract

Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit