EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Vizgirda & Ahrens 1982
Vizgirda, J. and Ahrens, T.J. (1982). Shock compression of aragonite and implications for the equation of state of carbonates. Journal of Geophysical Research 87: doi: 10.1029/JB087iB06p04747. issn: 0148-0227.

Hugoniot equation of state and release adiabat results are presented for c cut crystals of aragonite, the high-pressure polymorph of calcite, shocked to pressures of up to 40 GPa. A Hugoniot elastic limit is observed at 2.5¿0.8 GPa and is similar to that of calcite, which, depending on orientation, ranges from 1.5 to 2.5 GPa. A phase transition, possibly displacive, occurs between 5.5 and 7.6 GPa. Above shock pressures of ~10 GPa, the aragonite and calcite Hugoniots are nearly coincident, suggesting transformation of both polymoyhs to the same phase. Model calculations, attempting to characterize the high pressure CaCO3 phase are presented. Aragonite release adiabats centered at pressures between 9 and 14 GPa indicate that states with apparent zero-pressure densities from 2.9 to 3.2 g/cm3 are achieved upon decompression from progressively greater shock pressures. Observed unloading paths from shock pressures above 17 GPa are significantly and consistently shallower (in a density-pressure plane) than those from lower pressures, and zero-pressure densities up to 20% below that of the initial aragonite density are achieved upon unloading; these features suggest that vaporization is occurring upon unloading. According to theoretical shock temperature and entropy calculations, however, the minimum shock pressure for vaporization upon release for aragonite is 55 GPa (and 33 GPa for calcite), significantly higher than the observed value.

BACKGROUND DATA FILES

Abstract

Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit