EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Marlow & Cooper 1983
Marlow, M.S. and Cooper, A.K. (1983). Wandering terranes in southern Alaska: The Aleutia microplate and Implications for the Bering Sea. Journal of Geophysical Research 88: doi: 10.1029/JB088iB04p03439. issn: 0148-0227.

Paleomagnetic and geological data suggest that much of southern Alaska is a collage of tectonostratigraphic terranes which originated in Mesozoic time at paleolatitudes far south of their present position. The time of 'docking' of the terranes against cratonic Alaska is critical to defining their amalgamated size and extent during their northward motion as well as their role in the evolution of the Bering Sea. One of the largest of the tectonostratigraphic terranes, the Peninsular terrane of south central and southwestern Alaska, extends offshore along the outer Bering Sea continental margin (Beringia). Paleomagnetic data suggest that this terrane has moved northward thorugh all of Cenozoic time, but geologic data imply that the terrane had accreted to Alaska by the end of the Mesozoic. In early Cenozoic time the eastern part of the Aleution arc appears to have been superimposed on the Peninsular terrane, and postulated northward Cenozoic motion of the terrane would therefore have required northward motion of the arc. Two accretion models, based on docking times for terranes in Alaska, are proposed, and they illustrate that large areas of the abyssal Bering Sea, the Alaska Peninsula, the Aleutian arc, and the Beringian continental margin may be part of a superterrane or microplate called Aleutia (microplate as defined as Beck et al. (1980), i.e., a microplate is a displaced segment of lithosphere that has crustal roots, whereas a superterrane is an amalgamation of terranes which may or may not be rootless). Model A implies that the Aleutian arc developed in situ on the southern edge of Aleutia after the microplate had docked. In model B, the final docking time of the Pennisular terrane is late Cenozoic, which implies that the Aleutia microplate encompasses a mammoth area that includes parts of southern Alaska, the Alaska Peninsula, the southern Beringian margin, the abyssal Bering Sea (Kula plate), and the Aleutian arc. If model A is correct, the docking time of the Peninsular terrane is late Mesozoic or earliest Tertiary. The Aleutia microplate in this model is made up solely of the abyssal Bering Sea (Kula palte), which presumably docked at the same time or slightly after the Peninsular terrane accreted against Alaska. If model B is correct, that is, if the Aleutia collided with nuclear Alaska during the Cenozoic, then a late Cenozoic suture zone, the vestige of a large open sea that must have closed between Aleutia and Alaska, must exist in south central and southwest Alaska. Either evidence for Cenozoic closure and suturing has been obliterated in Alaska or the inferences of Cenozoic terrane motion derived from paleomagnetic data are suspect.

BACKGROUND DATA FILES

Abstract

Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit