Cosmochemical studies strongly favor a near-homogeneous accretion of the earth. These studies also show that core segregation probably occurred within the first 105 years of earth history. Mechanisms of core formation have received relatively little attention. The principal purpose of this paper is to examine dissipative melting as a possible mechanism for core segregation. For a large iron body migrating through the mantle, the potential energy lost by the body is dissipated by frictional heating. If the body has a radius greater than about 30 km, the frictional heating is sufficient to melt a path through which the body can fall. If the iron body is liquid (as expected) with a low viscosity, it would penetrate the mantle as a diapir. The problem of an immiscible liquid body melting its way through a solid is solved, and a family of diapir shapes is obtained. We find that dissipative heating may be a viable mechanism for core segregation if sufficiently large bodies of liquid iron can form. |