Fe-Ni alloys of meteorite composition were solidified by a plane front solidification technique. Distribution coefficients of Ni, P, Ir, Ge, and Cu were determined from the composition data of the plane front solidified alloys. Equations that describe the distribution coefficients (P, Ni, Ir, Ge, and Cu) as a function of S and P content as well as S to P ratio were used to calculate solute partitioning between solid and liquid during the solidification of IIAB, IIIAB, and IVA parent bodies. The calculated P versus Ni, Ir versus Ni, Ge versus Ni, and Cu versus Ni trends are in good agreement with the observed meteorite data for each chemical group. We conclude that each chemical group formed as a single molten pool in a parent body and that solute partitioning that occurred during solidification is responsible for the observed compositional trends within a single meteorite group. |