The Koobi Fora Formation, a Pliocene and Pleistocene sequence of sedimentary deposits northeast of Lake Turkana, has yielded numerous fossils and stone artifacts of early hominids. Stratigraphic correlation of the hominid-bearing deposits throughout the Turkara region was estalished primarily by the chemistry and isotopic ages of volcanic tuffs and complemented by magnetostratigraphic studies. We have reinterpreted previously published magnetostratigraphy from the upper part of the Koobi Fora Formation because the original stratigraphy and dating of tuffs have been revised. In our reinterpretation we include previously unpublished data from the uppermost part of the formation. The upper magnetozones correlate with parts of the Brunhes Normal-Polarity Chron and Matuyama Reversed-Polarity Chron (about 0.6--0.85 Ma) and are separated from the magnetozones of the upper part of the Matuyama (2.0--1.25 Ma) by a disconformity. The Olduvai Normal-Polarity Subchron is represented within the Matuyama, but the lower part of the Matuyama (2.4--2.0 Ma) is missing due to an erosional disconformity. We have also determined magnetozones in the lower part of the Koobi Fora Formation, which had not been sampled for paleomagnetism during the earlier studies. Our time calibration of the magnetozones is made possible by isotopic dating of several tuffs and by chemical correlation of Koobi Fora tuffs with dated tuffs in the Shungura Formation of southern Ethiopia. The tephra correlations are corroborated by the excellent concordance between the magnetostratigraphies of the Koobi Fora and Shungura formations. The lower part of the Koobi Fora spans the interval from about 4 Ma to 2.4 Ma within the Gilbert Reversed-Polarity and Gauss Normal-Polarity chrons. Rock magnetic studies indicate that detrital magnetite carries most of the stable remanence, although hematite contributes to the remanence as indicated by thermal demagnetization. The hematite, which presumably formed by postdepositional oxidation of original iron oxide grains, carries chemical remanent magnetization (CRM) that diminishes the sharpeness of polarity zone boundaries. The CRM accumulated continuously within the uppermost 10 m of sediment below the land surface, so that the CRM reinforces the depositional remanent magnetization within thick magnetozones but obscures magnetozones having durations of roughly less than 70,000 years in sections where the sedimentation rate was approximately 15 cm/1000 years. |