EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Fitterman et al. 1988
Fitterman, D.V., Stanley, W.D. and Bisdorf, R.J. (1988). Electrical structure of Newberry Volcano, Oregon. Journal of Geophysical Research 93: doi: 10.1029/88JB00259. issn: 0148-0227.

From the interpretation of magnetotelluric, transient electromagnetic, and Schlumberger resistivity soundings, the electrical structure of Newberry Volcano in central Oregon is found to consist of four units. From the surface downward, the geoelectrical units are (1) very resistive, young, unaltered volcanic rock, (2) a conductive layer of older volcanic material composed of altered tuffs, (3) a thick resistive layer thought to be in part intrusive rocks, and (4) a lower-crustal conductor. This model is similar to the regional geoelectrical structure found through the Cascade Range. Inside the caldera, the conductive second layer corresponds to the steep temperature gradient and alteration minerals observed in the USGS Newberry 2 test hole. Drill hole information on the south and north flanks of the volcano (test holes GES N-1 and GEO N-3, respectively) indicates that outside the caldera the conductor is due to alteration minerals (primarily smectite) and not high-temperature pore fluids. On the flanks of Newberry the conductor is generally deeper than inside the caldera, and its deepens with distance from the summit.

A notable exception to this pattern is seen just west of the caldera rim, where the conductive zone is shallower than at other flank locations. The volcano sits atop a rise in the resistive layer, interpreted to be due to intrusive rocks. The intrusive material has served as a heat source to produce enhanced hydrothermal alteration and, perhaps in the case of the west-flank anomaly, elevated fluid temperatures. While no public drill hole information is available to confirm this hypothesis, the west-flank anomaly appears to be a good geothermal target. In addition to the possiblity that a region on the west side of the volcano could be favorable for prospecting, part of the resistive structure under the center of the volcano could be due to a vapor-dominated environment with temperatures above 300¿C. In other parts of the Cascades, pervasive alteration has produced mixed layer clays and zeolities, resulting in low-resistivity anomalies. Low resistivities cannot be assumed to indicate high-temperature pore fluids. The use of electrical methods that measure resistivity as a function of excitation frequency, such as spectral induced polarization, may provide a way of obtaining information about the type and extent of alteration.

BACKGROUND DATA FILES

Abstract

Keywords
Exploration Geophysics, Magnetic and electrical methods, Physical Properties of Rocks, Magnetic and electrical properties, Volcanology, Hydrothermal systems, Information Related to Geographic Region, North America
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit