EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Reches & Fink 1988
Reches, Z. and Fink, J. (1988). The mechanism of intrusion of the Inyo Dike, Long Valley Caldera, California. Journal of Geophysical Research 93: doi: 10.1029/88JB01343. issn: 0148-0227.

We analyze the intrusion of the 11-km-long Inyo Dike at the margins of Long Valley caldera, eastern California. The dike trends N07 ¿W and is divided into at least three segments which are rotated by as much as 25¿ with respect to the main trend. The dike seems affected primarily by the regional stress field of right-lateral shear of the western United States and by the local thermal conditions of the crust; the dike seems unaffected by the preexisting caldera margins and Sierra-Nevada frontal fault system. The high heat flow in Long Valley caldera implies that crustal rocks below 3--4.5 km deform by steady state creep under tectonic strain rate and support low to vanishing tectonic shear stresses. The upper rocks, above 3--4.5 km, deform by frictional slip along fractures and may support tectonic shear stresses as high as 24 MPa. We demonstrate that depth variations of tectonic stresses may have a profound effect on the segmentation and rotation of dikes, both at Long Valley and in other areas of high heat flow. The analysis places constraints on several tectonic conditions. The Inyo Dike intruded under a tectonic stress state with a horizontal maximum compression oriented N07 ¿W. The maximum extensional fracture strength of the host rocks is 1--2.5 MPa, and the pressure drop within the propagating Inyo Dike was about 0.55 MPa/km. The volatile overpressure in the magma chamber was about 15 MPa during eruption of rhyolitic lavas at the Inyo Domes. ¿ American Geophysical Union 1988

BACKGROUND DATA FILES

Abstract

Keywords
Volcanology, Magma migration, Tectonophysics, Physics of magma and magma bodies, Information Related to Geographic Region, North America
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit