Numerous published analyses of the nontectonic state of stress are based on Hooke's law and the boundary condition of zero horizonal deformation. This approach has been used to determine the gravitational stress state as well as the effects of processes such as erosion and temperature changes on the state of listhospheric stress. The major disadvantage of these analyses involves the assumption of lateral constraint which seems unrealistic in view of the observational fact that the crust can deform horizontally in response to applied loads. If the same problems are addressed by assuming that the remote stress state is constant, instead of the condition of zero horizontal deformation, then the resulting stress states are entirely different and in good accord with observations. In the absence of applied tectonic forces only likely gravitational stress states are those for which all three principal stresses are nearly equal. To the contrary, the gravitational stress states developed on the basis of the lateral constraint assumption can be ruled out. The processes of erosion and sedimentation have slight tendencies to increase and decrease, respectively, the state of deviatoric stress. In particular, for initial stress states in the range of slightly extensional to compressional, erosion has the effect of enhancing the ratio of average horizontal to vertical stress, which may explain, at least in part, the common observation of high near-surface horizontal stresses. Temperature changes have only minor effects on the stress state, as averaged over the thickness of the lithosphere. |