EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Kono et al. 1989
Kono, M., Fukao, Y. and Yamamoto, A. (1989). Mountain building in the Central Andes. Journal of Geophysical Research 94: doi: 10.1029/88JB03954. issn: 0148-0227.

The Central Andes is the middle part of the Andean chain between about 13¿S and 27¿S, characterized by the parallel running high mountain chains (the Western and Eastern Cordilleras) at the edges of high plateaus with a height of about 4000 m and a width of 200 to 450 km (the Altiplano-Puna). From the examination of geophysical and geological data in this area, including earthquakes, deformation, gravity anomaly, volcanism, uplift history, and plate motion, we conclude that the continued plate subduction with domination of compressive stress over the entire arc system is the main cause of the tectonic style of the Central Andes. We propose that the present cycle of mountain building has continued in the Cenozoic with the most active phase since the Miocene, and that the present subduction angle (30¿) is not typical in that period but that subduction with more shallowly dipping oceanic lithosphere has prevailed at least since the Miocene, because of the young and buoyant slab involved. This situation is responsible for the production of a broad zone of partial melt in the mantle above the descending slab. Addition of volcanic materials was not restricted to the western edge (where active volcanoes of the Western Cordillera exist) but extended to the western and central portion of the Altiplano-Puna. The western half of the Central Andes is essentially isostatic because the heat transferred with the volcanic activities softened the crust there. In the eastern edge, the thermal effect is small, and the crust is strongly pushed by the westward moving South American plate. This caused the shortening of crustal blocks due to reverse faulting and folding in the Eastern Cordillera and Amazonian foreland.

The magmatism and crustal accretion are dominant at the western end of the mountain system and decrease eastward, while the compression and consequent crustal shortening are strongest at the eastern end and wane toward west. These two processes are superposed between the two mountain chains and form high plateaus there: the Altiplano of Bolivia and Peru and the Puna of Argentina. This interpretation is supported by the observation that (1) Neogene sedimentary formations have been uplifted to high elevations without heavy distortion in the Altiplano and the Western Cordillera, (2) no significant reverse fault systems are observed on the Altiplano, (3) Neogene volcanic rocks and volcanic centers since the Miocene are not restricted to the Western Cordillera but are widely distributed over most of the Altiplano, (4) most of the Altiplano is in a zone of high heat flow values, (5) thick Paleozoic rocks are strongly folded and faulted in the Eastern Cordillera with little volcanism and no large-scale plutonism in the Cenozoic age, (6) crustal earthquakes with reverse fault mechanisms are concentrated on the eastern flank of the Eastern Cordillera and Amazonian foreland, and (7) the crustal thickness suddenly decreases at the junction of the Eastern Cordillera and the Amazon Basin, exactly at the place of reverse earthquakes. ¿ American Geophysical Union 1989

BACKGROUND DATA FILES

Abstract

Keywords
Geodesy and Gravity, Local gravity anomalies and crustal structure, Information Related to Geographic Region, South America
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit