EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Vogel et al. 1989
Vogel, T.A., Noble, D.C. and Younker, L.W. (1989). Evolution of a chemically zoned magma body: Black Mountain volcanic center, southwestern Nevada. Journal of Geophysical Research 94: doi: 10.1029/88JB03529. issn: 0148-0227.

Rocks of the Black Mountain volcanic center consist of four ash flow sheets and units of lava that underlie, interfinger with, and overlie the sheets. Rocks from the center represent three magma types. Magma type c was present through the history of the center, whereas types a and b were available after the eruption of the Rocket Wash Member, during the eruptions of the Pahute Mesa and Trail Ridge members. The magma types are defined by trace element ratios; for example, magma types a, b, and c have La/Th values of 1.0--3.5, >7.5, and 3.5--7.5. Silica contents in the magma types a, b, and c range from 71.5 to 74.1, from 65.8 to 69.2, and from 55.6 to 73.8 wt %, respectively. The stratigraphic distribution of chemically distinct pumice fragments within the ash flow sheets is used to show that magma type a was located in the uppermost part of the chamber and was underlain successively by magma types b and c. Because pumice fragments that belong to all three magma types occur in individual cooling units, a zoned magma body must have existed during this period. Magma mixing is indicated by the disequilibrium phenocrysts which are common in pumice fragments from all magma types; however, this mixing did not destroy the original zoning of the upper part of the magma body. Most of the chemical variation of magma type c is consistent with fractionation of feldspar, olivine, and pyroxene, but abundant disequilibrium, mafic phenocrysts indicate that magma replenishment and mixing were common. Magma type b had much higher La/Th and light rare earth element (LREE)/heavy rare earth element values and must have originated independently from magma type c. Most likely the two types were derived from different source material. The low La/Th values of magma type a can be explained by separation of a phenocryst assemblage containing both a LREE-bearing phase and zircon from either magma types b or c, or possibly by the partial melting of source material containing these phases. ¿ American Geophysical Union 1989

BACKGROUND DATA FILES

Abstract

Keywords
Mineralogy and Petrology, Igneous petrology, Volcanology, Physics and chemistry of magma bodies, Geochemistry, Chemical evolution, Information Related to Geographic Region, North America
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit