A belt type solid media high-pressure apparatus has been calibrated to the same accuracy as piston-cylinder apparatuses. This was achieved by ensuring high reproducibility of pressures and temperatures and by calibrating the system with well-established, internally consistent phase transtion. We have used the melting of silver (Mirwald and Kennedy, 1979), the quartz-coesite transition (Mirwald and Masonne, 1980), and the graphite-diamond boundary (Kennedy and Kennedy, 1976). High reproducibility of experimental conditions can be achieved by machining the various components of the furnace assembly very accurately and by using components which do not contaminate the thermocouple and have 99--100% theoretical density (in our case single-crystal MgO and natural polycrystalline CaF2). It is essential that the gasket material has well-defined mechanical properties: its friction behavior must be repoducible in each experiment so that the ram pressure always acts on the pressure vessel and the sample in the same way. Factory-processed pyrophyllite fulfills this requirement. With all precautions taken and on the basis of the reactions cited above, we claim an accuracy of ¿7 ¿C and ¿(1% nominal pressure +0.05 GPa). This corresponds to the accuracy given by Mirwald et al. (1975) for a low-friction cell for a piston-cylinder apparatus. Our belt apparatus is used routinely to achieve pressures up to 6 GPa and temperatures up to 1800 ¿C. ¿American Geophysical Union 1990 |