EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Lindner 1990
Lindner, B.L. (1990). The martian polar cap: Radiative effects of ozone, clouds, and airborne dust. Journal of Geophysical Research 95: doi: 10.1029/89JB01426. issn: 0148-0227.

The solar and thermal flux striking the polar cap of Mars is computed for various ozone, dust, and cloud abundances and for three solar zenith angles. Ozone does not significantly affect the total energy budget of the polar cap. Hence the observed hemispherical asymmetry in ozone abundance causes only an insignificant hemispherical asymmetry in the polar caps. Vertical optical depths of dust and cloud ranging from zero to 1 cause little change in the total flux absorbed by the polar cap near its edge but increase the absorbed flux significantly as one travels poleward. Hemispherical asymmetries in dust abudance, cloud cover, and surface pressure combine to cause a significant hemispherical asymmetry in the total flux absorbed by the residual polar caps, which helps to explain the dichotomy in the residual polar caps on Mars. Other processes which affect the energy budget of the polar cap are proposed and reviewed, particularly with respect to their interaction with the radiative effects of clouds and dust. Âż American Geophysical Union 1990

BACKGROUND DATA FILES

Abstract

Keywords
Planetology, Solid Surface Planets, Atmospheres—composition and chemistry
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit