EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Mitchell 1991
Mitchell, N.C. (1991). Distributed extension at the Indian Ocean triple junction. Journal of Geophysical Research 96: doi: 10.1029/91JB00177. issn: 0148-0227.

The Indian Ocean triple junction is a ridge-ridge-ridge type joining two medium-spreading ridges with one slow-spreading ridge. GLORIA long-range side scan sonar images show that, while the axial valleys of the two medium-spreading ridges are almost colinear, apart from a small ~5 km offset, the valley of the slow-spreading third axis does not meet the other two in a simple fashion. The axis of this slow-spreading Southwest Indian Ridge (SWIR), beyond the rift valley walls of the other two ridges, steadily deepens by over 1000 m away from the triple junction to reach 5000 m at 35 km. The GLORIA images show large normal fault around the deep SWIR rift valley, which increase in heave away from the triple junction and crosscut the abyssal hills formed at the faster-spreading Central Indian Ridge, indicating that extension across the SWIR is distributed over a zone 10 km or more wide. This zone also shows no evidence for the formation of new oceanic crust, suggesting that the extension may be amagmatic near te triple junction. The high relief of the SWIR rift flanks, containing tilted seafloor of the other two ridges, may be an isostatic response of the lithosphere to the deep valley produced by this rifting. These observations, which suggest the progressive development of a propagating SWIR rift by the extension of preexisting seafloor, may have general implications for the dynamics of oceanic spreading centers. In particular, the deepening and widening of the valley away from the triple junction is attributed to the competing effects of tectonic thinning and lithospheric cooling. Thermal models of mid-ocean ridges spreading at ~30 mm/yr (e.g., Lin and Parmentier, 1989) predict that the depth to the 700 ¿C isotherm increases with distance from the spreading axis by a proportion similar to the observed doubling in the total width of the deformation with distance from 10 to 35 km away from the triple junction. This rate of widening of the deformation zone may therefore support lithospheric necking models for oceanic rift valleys, if the width and depth of the deforming lithosphere are related in a simple manner. ¿ American Geophysical Union 1991

BACKGROUND DATA FILES

Abstract

Keywords
Marine Geology and Geophysics, Midocean ridge processes, Tectonophysics, Plate boundary—general, Marine Geology and Geophysics, Plate tectonics
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit