 |
| Detailed Reference Information |
|
Isaak, D.G. and Masuda, K. (1995). Elastic and viscoelastic properties of a iron at high temperatures. Journal of Geophysical Research 100: doi: 10.1029/95JB01235. issn: 0148-0227. |
|
|
Recent experiments done at low driving frequencies suggest that a large degree of dispersion exists in the measured value of the shear modulus, μ, of α iron at high temperature. Discrepancies between values for μ from ultrasonic measurements and those from low-frequency torsional measurements have been interpreted in terms of viscoelastic relaxation. However, the ultrasonic data are not in agreement with one another, and the degree of dispersion is not accurately known. We present new high-temperature data for the elastic moduli of single-crystal iron (α phase). The elastic moduli were measured using the rectangular parallelepiped resonance method (0.27--0.59 MHz) from room temperature to 925 K. Our data show that the difference in μ at high temperature between ultrasonic-based measurements and low-frequency (1 Hz) torsional measurements is only 14 GPa, rather than 29 GPa, as inferred from previous analyses. Thus the possible effects of viscoelastic relaxation are reduced but not eliminated. We find no dispersion in measurements for μ of α iron when considering frequencies ranging from 0.27 to 70 MHz and discuss the possibility that significant viscoelastic effects on measurements of μ at high temperature are limited to frequencies below 3 Hz. ¿ American Geophysical Union 1995 |
|
 |
 |
| BACKGROUND DATA FILES |
|
 |
Abstract |
|
 |
|
|
|
Keywords
Tectonophysics, Earth's interior—composition and state, Mineral Physics, Elasticity and anelasticity, Mineral Physics, Equations of state, Tectonophysics, Core processes |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
 |