EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Lizarralde et al. 1995
Lizarralde, D., Chave, A., Hirth, G. and Schultz, A. (1995). Northeastern Pacific mantle conductivity profile from long-period magnetotelluric sounding using Hawaii-to-California submarine cable data. Journal of Geophysical Research 100: doi: 10.1029/95JB01244. issn: 0148-0227.

We present results of a long-period magnetotelluric (MT) investigation of the electrical structure beneath the eastern North Pacific. The electric field data consist of ~2 years of continuously recorded voltages across an unpowered, ~4000-km-long submarine telephone cable (HAW-1) extending from Point Arena, California, to Oahu, Hawaii. The electric field measurements are coherent to some degree with magnetic field measurements from Honolulu Observatory at periods of 0.1 to 45 days. This coherence is enhanced at long periods over that observed with point electric field sensors due to horizontal averaging of the motional electric fields of spatial scale smaller than the cable length, significantly diminishing their effect. Robust, controlled leverage MT response estimates and their jacknife confidence limits are computed for the HAW-1 to Honolulu data. An equivalent scalar MT response obtained from Honolulu magnetic variations data is used to correct the HAW-1 MT response for static shift and to extend the MT response estimate to periods of 100 days. The composite response function satisfies necessary and sufficient conditions for consistency with a one-dimensional conductivity structure and is most sensitive to structure between 150 and 1000 km.

Inversion of the MT response reveals a conductive zone (0.05--0.1 S/m) between 150 and 400 km depth and a positive gradient below 500 km; these observations are consistent with previous MT studies in the North Pacific. This upper mantle conductivity is too high to be explained by solid-state conduction in dry olivine using reasonable mantle geotherms. Calculations based on measurements of hydrogen solubility and diffusivity in olivine indicate that H+ dissolved in olivine, possibly combined with a lattice preferred orientation consistent with measured seismic anisotropy, provide sufficient conductivity enhancement to explain the inversion results. The high conductivity may also be explained by the presence of gravitationally stable partial melt. Comparison of the HAW-1 results with long-period MT studies conducted on land reveals differences in upper mantle conductivity between different tectonic regimes. In particular, the upper mantle beneath the Pacific Ocean is considerably more conductive than that beneath the Canadian shield and similar in conductivity to that beneath the Basin and Range. ¿ American Geophysical Union 1995

BACKGROUND DATA FILES

Abstract

Keywords
Tectonophysics, Earth's interior—composition and state
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit