EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
van Keken et al. 1997
van Keken, P.E., King, S.D., Schmeling, H., Christensen, U.R., Neumeister, D. and Doin, M.-P. (1997). A comparison of methods for the modeling of thermochemical convection. Journal of Geophysical Research 102: doi: 10.1029/97JB01353. issn: 0148-0227.

We have compared several methods of studying thermochemical convection in a Boussinesq fluid at infinite Prandtl number. For the representation of chemical heterogeneity tracer, marker chain, and field methods are employed. In the case of an isothermal Rayleigh-Taylor instability, good agreement is found for the initial rise of the unstable lower layer; however, the timing and location of the later smaller-scale instabilities may differ between methods. For a simulation of entrainment by thermal convection of a dense layer at the bottom of the mantle we found good agreement for a few overturn times. After this, differences between the results can be large. We propose intrinsic differences between the methods and possibly chaotic mixing effects may be the cause of the lack of detailed agreement. The comparison shows that high resolution is necessary for a reasonable thermochemical study. This will pose severe restrictions on the applicability of these methods to three-dimensional situations.¿ 1997 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Mathematical Geophysics, Numerical solutions, Mathematical Geophysics, Modeling, Tectonophysics, Dynamics of lithosphere and mantle—general
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit