EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Berckhemer et al. 1997
Berckhemer, H., Rauen, A., Winter, H., Kern, H., Kontny, A., Lienert, M., Nover, G., Pohl, J., Popp, T., Schult, A., Zinke, J. and Soffel, H.C. (1997). Petrophysical properties of the 9-km-deep crustal section at KTB. Journal of Geophysical Research 102: doi: 10.1029/96JB03396. issn: 0148-0227.

Petrophysical properties of drill core and drill cuttings samples from both bore holes of the German Continental Deep Drilling Program (KTB) measured at atmospheric pressure and room temperature in the field laboratory are presented, along with data of core samples measured at simulated in situ conditions by other laboratories. Most of the petrophysical properties show a bimodal frequency distribution corresponding to the two main lithologies (gneiss and metabasite), except electrical resistivity and Th/U ratio which are lithology independent (monomodal distribution). Low resistivities are mainly associated with fractures zones enriched in fluids and graphite. The most abundant ferrimagnetic mineral is monoclinic pyrrhotite. Below 8600 m, hexagonal pyrrhotite with a Curie temperature of 260 ¿C is the stable phase. Thus the Curie isotherm of the predominant pyrrhotite was reached (bottom hole temperature about 265 ¿C). The highest values of magnetic susceptibility are linked with magnetite. Microcracks grow due to pressure and temperature release during core uplift. This process continues after recovery and is documented by the anelastic strain relaxation and acoustic emissions. The crystalline rocks exhibit marked reversible hydration swelling. Anisotropy of electrical resistivity, permeability, P and S wave velocity is reduced significantly by applying confining pressure, due to closing of microcracks. Fluids within the microcracks also reduce the P wave velocity anisotropy and P wave attenuation. Anisotropy and shear wave splitting observed in the field seismic experiments is caused by the foliation of rocks, as confirmed by laboratory measurements under simulated in situ conditions. The petrophysical studies provide evidence that microfracturing has an important influence on many physical rock properties in situ.¿ 1997 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Physical Properties of Rocks, General or miscellaneous, Exploration Geophysics, Continental structures
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit