EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Conrad et al. 1997
Conrad, M.E., Thomas, D.M., Flexser, S. and Vennemann, T.W. (1997). Fluid flow and water-rock interaction in the East Rift Zone of Kilauea Volcano, Hawaii. Journal of Geophysical Research 102: doi: 10.1029/97JB01072. issn: 0148-0227.

The East Rift Zone of Kilauea Volcano in Hawaii represents a major area of geothermal activity. Fluid inclusion and stable isotope analyses of secondary hydrothermal minerals in core samples from three scientific observation holes (SOH) drilled into the rift zone indicate that the geothermal system is dominated by meteoric waters to depths of as much as 1500 m below sea level. Calculated Δ18O and ΔD values for fluids on the north side of the rift zone indicate that the deep meteoric fluids may be derived from precipitation on the upper slopes of Mauna Loa Volcano. In the interior of the rift zone, recharge is dominated by seawater mixed with local meteoric water. Water/rock ratios in the rift area are approximately 2, but strongly 18O-enriched fluids in the deeper parts of the SOH-2 and SOH-4 drill holes (on the north side of the rift) indicate that the fluids underwent extensive interaction with rocks prior to reaching this part of the rift zone. Marine carbonates at the subaerial to submarine transition (between 1700 and 1780 m depth) in SOH-4 have not fully equilibrated with the fluids, suggesting that the onset of hydrothermal activity in this area was relatively recent (<2000 years). This may represent increased volcanic activity along the rift after the end of the Ai La'au phase of eruptive activity at the Kilauea summit approximately 1000 years ago, or it may reflect progressive evolution of the hydrothermal system in response to southward migration of intrusive activity within the rift.¿ 1997 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Geochemistry, Isotopic composition/chemistry, Volcanology, Hydrothermal systems
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit