EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Tucholke et al. 1998
Tucholke, B.E., Lin, J. and Kleinrock, M.C. (1998). Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. Journal of Geophysical Research 103: doi: 10.1029/98JB00167. issn: 0148-0227.

In a study of geological and geophysical data from the Mid-Atlantic Ridge, we have identified 17 large, domed edifices (megamullions) that have surfaces corrugated by distinctive mullion structure and that are developed within inside-corner tectonic settings at ends of spreading segments. The edifices have elevated residual gravity anomalies, and limited sampling has recovered gabbros and serpentinites, suggesting that they expose extensive cross sections of the oceanic crust and upper mantle. Oceanic megamullions are comparable to continental metamorphic core complexes in scale and structure, and they may originate by similar processes. The megamullions are interpreted to be rotated footwall blocks of low-angle detachment faults, and they provide the best evidence to date for the common development and longevity (~1--2 m.y.) of such faults in ocean crust. Prolonged slip on a detachment fault probably occurs when a spreading segment experiences a lengthy phase of relatively amagmatic extension. During these periods it is easier to maintain slip on an existing fault at the segment end than it is to break a new fault in the strong rift-valley lithosphere; slip on the detachment fault probably is facilitated by fault weakening related to deep lithospheric changes in deformation mechanism and mantle serpentinization. At the segment center, minor, episodic magmatism may continue to weaken the axial lithosphere and thus sustain inward jumping of faults. A detachment fault will be terminated when magmatism becomes robust enough to reach the segment end, weaken the axial lithosphere, and promote inward fault jumps there. This mechanism may be generally important in controlling the longevity of normal faults at segment ends and thus in accounting for variable and intermittent development of inside-corner highs. ¿ 1998 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Exploration Geophysics, Oceanic structures, Marine Geology and Geophysics, Midocean ridge processes, Structural Geology, Fractures and faults, Tectonophysics, Stresses—crust and lithosphere
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit