|
Detailed Reference Information |
Brodsky, E.E., Sturtevant, B. and Kanamori, H. (1998). Earthquakes, volcanoes, and rectified diffusion. Journal of Geophysical Research 103: doi: 10.1029/98JB02130. issn: 0148-0227. |
|
Rectified diffusion is a mechanism by which a strain wave can rapidly pump volatiles into a bubble and therefore increase the pressure in a closed system. The dynamic strain of either distant regional tectonic earthquakes or local volcanic tremor can be translated to static strain inside a magma chamber via this process. We formulate a theory appropriate to the conditions of a magma chamber and calculate the increased pressure using realistic physical parameters. For a basaltic system initially at 130 MPa pressure, the excess pressure from rectified diffusion is between 0.4 and 4 MPa for a regional M≥8 earthquake. The pressure from rectified diffusion is often significantly above the static stress caused by deformation for documented cases of triggered eruptions and thus presents a more viable mechanism for triggering. Prolonged tremor can have a similar effect since the total pressure added increases linearly with the duration of the excitation. ¿ 1998 American Geophysical Union |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Seismology, Volcano seismology, Volcanology, Eruption mechanisms, Volcanology, Physics and chemistry of magma bodies |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|