Detectable crustal motion and secular rate of change of solid-surface gravity may be produced by the Earth's response to present-day and past ice mass changes in Antarctica. Scenarios of present-day ice mass balance, previously utilized to explore the global geodetic signatures of the Antarctic ice sheet, produce elastic crustal responses that are typically bounded by uplift rates ≤5 mm/yr, horizontal motion ≤1 mm/yr, and solid-surface gravity change rates ≤1 μGal/yr. In a restricted locality, one scenario produces uplift rates slightly in excess of 10 mm/yr and correspondingly enhanced horizontal and gravity rates. In contrast, the viscoelastic response to ice mass changes occurring since Last Glacial Maximum (LGM) exceeds 5 mm/yr (uplift) over substantial portions of West Antarctica for a wide range of plausible choices of timing and magnitude of deglaciation and mantle viscosity. Similarly, viscoelastic gravity rate predictions exceed 1 μGal/yr (decrease) over large regions, confirming suggestions that a Global Positioning System (GPS) and absolute gravity-based program of crustal monitoring in Antarctica could potentially detect postglacial rebound. A published revision to the CLIMAP model of the Antarctic ice sheet at LGM, herein called the D91 model, features a substantially altered West Antarctic ice sheet reconstruction. This revision predicts a spatial pattern of present-day crustal motion and surface gravity change that diverges strikingly from CLIMAP-based models. Peak D91 crustal rates, assuming deglaciation begins at 12 kyr and ends at 5 kyr, are around 16 mm/yr (uplift), 2 mm/yr (horizontal), and -2.5 μGal/yr (gravity). Tabulated crustal response predictions for selected Antarctic bedrock sites indicate critical localities in the interior of West Antarctica where expected responses are large and D91 predictions differ from CLIMAP-based models by a factor of 2 or more. Observations of the postglacial rebound signal in Antarctica might help constrain Antarctic mass balance and contribution to sea level rise over the past 20,000 years. Âż 1998 American Geophysical Union |