EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Douglass et al. 1999
Douglass, J., Schilling, J. and Fontignie, D. (1999). Plume-ridge interactions of the Discovery and Shona mantle plumes with the southern Mid-Atlantic Ridge (40°–55¿°S). Journal of Geophysical Research 104: doi: 10.1029/98JB02642. issn: 0148-0227.

We report on 66 Pb, Sr, and Nd isotope analyses of basalts dredged along the Mid-Atlantic Ridge (MAR) from 40¿ to 55 ¿S. The results strongly indicate interaction and mixing between the off-ridge Discovery and ridge-centered Shona mantle plumes and the ambient asthenosphere beneath the MAR. In addition, the Bouvet mantle plume appears to be feeding the southernmost portion of the MAR as suggested earlier by le Roex et al. <1987>. The Discovery and Shona plumes have enriched mantle and high-μ (μ=238U/204Pb) affinities, respectively. Their proximity to one another suggests a genetic relationship, probably associated with subducted altered oceanic crust recycled through the mantle with some sediment (Discovery) or without sediment (Shona). The Discovery Ridge Anomaly exhibits Pb, Sr, and Nd isotopic discontinuities resulting from southward preferential plume flow across the Agulhas transform beginning ~13 Ma. The presence of a component with unusually low 206Pb/204Pb accompanied by high 87Sr/86Sr and low 208Pb/204Pb and 143Nd/144Nd in the Discovery Ridge Anomaly and to a lesser extent in the Shona Ridge Anomaly indicates three-component mixing between the ambient asthenosphere, the Discovery and Shona plumes, and this low-μ (LOMU) component which possibly represents subcontinental lithospheric mantle material. We also note that in Pb, Sr, and Nd isotopic space, ocean island basalts from the Tristan, Gough, and Discovery family of plumes could be interpreted as resulting from binary mixing between a generic plume component similar to Bouvet or the C component <Hanan and Graham, 1994> and the LOMU component, which progressively increases southward. The LOMU component seems to be a characteristic feature of the South Atlantic and Indian Ocean mantles and is thought to reside passively in the shallow mantle because of delamination of subcontinental lithospheric mantle following the breakup of Gondwana. ¿ 1999 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Geochemistry, Composition of the mantle, Geochemistry, Isotopic composition/chemistry
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit