|
Detailed Reference Information |
Morin, R.H. and Flamand, R. (1999). Analysis of stress-induced oval fractures in a borehole at Deep Sea Drilling Project Site 504, eastern equatorial Pacific. Journal of Geophysical Research 104: doi: 10.1029/1998JB900086. issn: 0148-0227. |
|
Deep Sea Drilling Project (DSDP) Hole 504B is located in the eastern equatorial Pacific Ocean and extends to a total depth of 2111 m beneath the seafloor (mbsf). Several acoustic televiewer logs have been obtained in this well during successive stages of drilling, and the resulting digital images have revealed numerous oval-shaped fractures seemingly etched into the borehole wall. A theoretical examination of these stress-induced features identifies a unique and ephemeral set of stress distributions and magnitudes that are necessary for their production. Consequently, the ovals provide a basis for quantifying the magnitudes and orientations of the maximum and minimum horizontal principal stresses, SH and Sh, at this site. Vertical, truncated breakouts and horizontal tensile fractures define the spatial boundaries of the ovals. Explicit criteria for their occurrence are combined with estimates for various physical properties of the rock to yield a range of possible values for the horizontal principal stresses. The conspicuous oval geometry is completed by a curved fracture that joins the vertical and horizontal components. Its degree of curvature is delineated by the modified Griffith failure criterion and is directly related to the principal stress difference (SH-Sh). Matching a series of type curves corresponding to specific values for (SH-Sh) with the actual undistorted well bore images allows the magnitude of the stress difference to be further constrained. With a value for (SH-Sh) of 45¿5 MPa the individual magnitudes of SH and Sh are determined more precisely. Final estimates for the horizontal principal stresses in DSDP Hole 504B at a depth of 1200 mbsf are 141 MPa≤SH≤149 MPa and 91 MPa≤Sh≤109 MPa. Stress magnitudes derived from this approach rely heavily upon the values of a variety of physical properties, and complementary laboratory measurements performed on relevant rock samples provide critical information. Uncertainties in estimating these properties translate into less precise predictions of principal stresses. ¿ 1999 American Geophysical Union |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Tectonophysics, Stresses—crust and lithosphere, Exploration Geophysics, Downhole methods, Structural Geology, Mechanics, Seismology, Oceanic crust |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|