EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Roberts et al. 2000
Roberts, A.P., Pike, C.R. and Verosub, K.L. (2000). First-order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples. Journal of Geophysical Research 105: doi: 10.1029/2000JB900326. issn: 0148-0227.
Paleomagnetic and environmental magnetic studies are commonly conducted on samples containing mixtures of magnetic minerals and/or grain sizes. Major hysteresis loops are routinely used to provide information about variations in magnetic mineralogy and grain size. Standard hysteresis parameters, however, provide a measure of the bulk magnetic properties, rather than enabling discrimination between the magnetic components that contribute to the magnetization of a sample. By contrast, first-order reversal curve (FORC) diagrams, which we describe here, can be used to identify and discriminate between the different components in a mixed magnetic mineral assemblage. We use magnetization data from a class of partial hysteresis curves known as first-order reversal curves (FORCs) and transform the data into contour plots (FORC diagrams) of a two-dimensional distribution function. The FORC distribution provides information about particle switching fields and local interaction fields for the assemblage of magnetic particles within a sample. Superparamagnetic, single-domain, and multidomain grains, as well as magnetostatic interactions, all produce characteristic and distinct manifestations on a FORC diagram. Our results indicate that FORC diagrams can be used to characterize a wide range of natural samples and that they provide more detailed information about the magnetic particles in a sample than standard interpretational schemes which employ hysteresis data. It will be necessary to further develop the technique to enable a more quantitative interpretation of magnetic assemblages; however, even qualitative interpretation of FORC diagrams removes many of the ambiguities that are inherent to hysteresis data. ¿ 2000 American Geophysical Union Paleomagnetic and environmental magnetic studies are commonly conducted on samples containing mixtures of magnetic minerals and/or grain sizes. Major hysteresis loops are routinely used to provide information about variations in magnetic mineralogy and grain size. Standard hysteresis parameters, however, provide a measure of the bulk magnetic properties, rather than enabling discrimination between the magnetic components that contribute to the magnetization of a sample. By contrast, first-order reversal curve (FORC) diagrams, which we describe here, can be used to identify and discriminate between the different components in a mixed magnetic mineral assemblage. We use magnetization data from a class of partial hysteresis curves known as first-order reversal curves (FORCs) and transform the data into contour plots (FORC diagrams) of a two-dimensional distribution function. The FORC distribution provides information about particle switching fields and local interaction fields for the assemblage of magnetic particles within a sample. Superparamagnetic, single-domain, and multidomain grains, as well as magnetostatic interact
BACKGROUND DATA FILES

Abstract

Keywords
Geomagnetism and Paleomagnetism, Environmental magnetism, Geomagnetism and Paleomagnetism, Rock and mineral magnetism, Geomagnetism and Paleomagnetism, Instruments and techniques
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit