EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Tommasi et al. 2000
Tommasi, A., Mainprice, D., Canova, G. and Chastel, Y. (2000). Viscoplastic self-consistent and equilibrium-based modeling of olivine lattice preferred orientations: Implications for the upper mantle seismic anisotropy. Journal of Geophysical Research 105: doi: 10.1029/1999JB900411. issn: 0148-0227.

Anisotropy of upper mantle physical properties results from lattice preferred orientation (LPO) of upper mantle minerals, in particular olivine. We use an anisotropic viscoplastic self-consistent (VPSC) and an equilibrium-based model to simulate the development of olivine LPO and, hence, of seismic anisotropy during deformation. Comparison of model predictions with olivine LPO of naturally and experimentally deformed peridotites shows that the best fit is obtained for VPSC models with relaxed strain compatibility. Slight differences between modeled and measured LPO may be ascribed to activation of dynamic recrystallization during experimental and natural deformation. In simple shear, for instance, experimental results suggest that dynamic recrystallization results in further reorientation of the LPO leading to parallelism between the main (010)<100> slip system and the macroscopic shear. Thus modeled simple shear LPOs are slightly misoriented relative to LPOs measured in natural and experimentally sheared peridotites. This misorientation is higher for equilibrium-based models. Yet seismic properties calculated using LPO simulated using either anisotropic VPSC or equilibrium-based models are similar to those of naturally deformed peridotites; errors in the prediction of the polarization direction of the fast S wave and of the fast propagation direction for P waves are usually <15¿. Moreover, overestimation of LPO intensities in equilibrium-based and VPSC simulations at high strains does not affect seismic anisotropy estimates, because these latter are weakly dependent on the LPO intensity once a distinct LPO pattern has been developed. Thus both methods yield good predictions of development of upper mantle seismic anisotropy in response to plastic flow. Two notes of caution have nevertheless to be observed in using these results: (1) the dilution effect of other upper mantle mineral phases, in particular enstatite, has to be taken into account in quantitative predictions of upper mantle seismic anisotropy, and (2) LPO patterns from a few naturally deformed peridotites cannot be reproduced in simulations. These abnormal LPOs represent a small percent of the measured natural LPOs, but the present sampling may not be representative of their abundance in the Earth's upper mantle. ¿ 2000 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Physical Properties of Rocks, Acoustic properties, Seismology, Lithosphere and upper mantle, Tectonophysics, Dynamics of lithosphere and mantle—general, Tectonophysics, Rheology—mantle
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit