EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Li & Vernon 2001
Li, Y. and Vernon, F.L. (2001). Characterization of the San Jacinto fault zone near Anza, California, by fault zone trapped waves. Journal of Geophysical Research 106: doi: 10.1029/2000JB000107. issn: 0148-0227.

We installed three 350-m-long seismic arrays, each array consisting of 12 three-component stations, across the Coyote Creek fault (CCF), Clark Valley fault (CVF), and Buck Ridge fault (BRF) of the San Jacinto fault zone (SJFZ) near Anza, California, to record fault zone trapped waves from microearthquakes. We observed trapped waves with relatively large amplitudes and long duration at stations close to the fault traces for earthquakes occurring within the fault zone. The coda-normalized amplitude spectra of trapped waves showed peaks at 4--7 Hz, which decreased sharply with the distance from the fault trace. Observations and three-dimensional finite difference simulations of trapped waves revealed low-velocity and low-Q waveguides on these active faults with the width of 75--100 m in which shear velocities are reduced by 25--30% from wall rock velocities and Q values are 40--90 at depths between the surface and 18 km. The locations of earthquakes for which we observed trapped waves delineate the most seismically active fault strands of the SJFZ in a region with complicated slip planes near Anza. The low-velocity waveguides inferred from trapped waves extend 15 to 20 km in the length on these active faults and are segmented by the fault discontinuities. The waveguide on the BRF dips southwestward to connect the waveguide on the CVF, which dips northeastward. This waveguide extends at the seismogenic depth through Anza slip gap to another low-velocity waveguide on the Casa Loma fault (CLF), which has been delineated in our previous study of the SJFZ using trapped waves <Li et al., 1997>. The waveguide on the CCF in Coyote Mountain is nearly vertical and disconnected from the CLF at the south edge of Anza gap. We interpret the low-velocity waveguides on these active strands to partly result from recent prehistoric significant earthquakes on them and evaluate the future earthquake in the Anza region ¿ 2001 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Seismology, Continental crust, Seismology, Earthquake dynamics and mechanics, Seismology, Seismic hazard assessment and prediction, Seismology, Seismicity and seismotectonics
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit