EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Sallarès et al. 2001
Sallarès, V., Dañobeitia, J.J. and Flueh, E.R. (2001). Lithospheric structure of the Costa Rican Isthmus: Effects of subduction zone magmatism on an oceanic plateau. Journal of Geophysical Research 106: doi: 10.1029/2000JB900245. issn: 0148-0227.

We present the results of a multidisciplinary geophysical study, conducted to investigate the lithospheric structure of the Costa Rican Isthmus. The physical properties of the lithosphere are resolved by three-dimensional (3-D) simultaneous inversion of velocity anomalies and hypocenter parameters using local earthquakes and 2-D forward modeling of onshore and offshore seismic refraction and gravity data. According to our results, the northern half of the Costa Rican Isthmus is constituted by a ~40-km-thick crust, with a 6- to 7-km-thick oceanic crust subducting under it. The uppermost level of the basement and most of the marginal wedge show intermediate velocities and high densities, in good agreement with those described for flood basalts. The midlevel shows velocities and densities representative of oceanic crust. The bottommost level (20--40 km) shows high velocities and densities, typical of mafic rocks, and the upper mantle displays anomalously low densities and velocities. Intracrustal heterogeneities at intermediate wavelengths are indicated by prominent velocity anomalies. These results are consistent with a basement beneath the Costa Rican Isthmus being part of the Caribbean plateau, originated at 85--90 Ma with the onset of the Gal¿pagos hotspot. The upper level corresponds to the flood basalts extruded during this phase, and it includes most of the marginal wedge. The second level represents the preexisting oceanic crust. The mafic lower crust, intracrustal heterogeneities, and anomalous upper mantle are interpreted to be built up by underplating, intrusion, and crystallization of basaltic melts, formed under the influence of subducting lithosphere dehydration. ¿ 2001 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Seismology, Oceanic crust, Structural Geology, Local crustal structure
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit