EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Wolk & Lueck 2001
Wolk, F. and Lueck, R.G. (2001). Heat flux and mixing efficiency in the surface mixing layer. Journal of Geophysical Research 106: doi: 10.1029/2000JC000421. issn: 0148-0227.

Fluctuations of vertical velocity and temperature, w' andT', were measured with a horizontal profiler that was towed at night in the oceanic boundary layer between 15 and 25 m depth. Stratified and convective turbulent regimes were encountered along the tow path. A direct estimate of the turbulent heat flux F was computed from the correlation of w' and T'. The concurrent measurement of the dissipation rate of turbulent kinetic energy &egr; allowed us to estimate the mixing efficiency &Ggr;0=F/F&egr;, where F&egr; was the heat flux estimate based on the average dissipation rate. In regions where the turbulence in the stratified boundary layer was sustained by shear instabilities 0.08≤&Ggr;0≤1.38. The average was &Ggr;¿0=0.46, a value close to the maximum mixing efficiency predicted by classical scaling arguments and laboratory results. The measurements of w' were significantly influenced by instrument motions and the orbital velocities induced by surface waves. A motion correction algorithm made it possible to resolve overturning length scales up to 33 m and thus to capture all scales that contributed to the heat flux F. For the surface mixing layer reported here the largest flux-supporting scales were ~14 m. For the stably stratified regimes in particular the peak of the heat flux cospectrum was at one half of the Ozmidov wave number, 0.5k0. ¿ 2001 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Oceanography, General, Oceanography, General, Analytical modeling
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit