|
Detailed Reference Information |
Zappa, C.J., Asher, W.E. and Jessup, A.T. (2001). Microscale wave breaking and air-water gas transfer. Journal of Geophysical Research 106: doi: 10.1029/2000JC000262. issn: 0148-0227. |
|
Laboratory results showing that the air-water gas transfer velocity k is correlated with mean square wave slope have been cited as evidence that a wave-related mechanism regulates k at low to moderate wind speeds <J¿hne et al., 1987; Bock et al., 1999>. Csanady <1990> has modeled the effect of microscale wave breaking on air-water gas transfer with the result that k is proportional to the fractional surface area covered by surface renewal generated during the breaking process. In this report we investigate the role of microscale wave breaking in gas transfer by determining the correlation between k and AB, the fractional area coverage of microscale breaking waves. Simultaneous, collocated infrared (IR) and wave slope imagery is used to verify that AB detected using IR techniques corresponds to the fraction of surface area covered by surface renewal in the wakes of microscale breaking waves. Using measurements of k and AB made at the University of Washington wind-wave tank at wind speeds from 4.6 to 10.7 m s-1, we show that k is linearly correlated with AB, regardless of the presence of surfactants. This result is consistent with Csanady's <1990> model and implies that microscale wave breaking is likely a fundamental physical mechanism contributing to gas transfer. ¿ 2001 American Geophysical Union |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Oceanography, General, Remote sensing and electromagnetic processes, Oceanography, Physical, Air/sea interactions, Oceanography, Physical, Surface waves and tides, Oceanography, Physical, Turbulence, diffusion, and mixing processes |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|