|
Detailed Reference Information |
Schott, F., Leaman, K., Samuels, G., Frisch, A.S. and Fontino, I.P. (1985). High-frequency Doppler radar measurements of the Florida current in Summer 1983. Journal of Geophysical Research 90: doi: 10.1029/JC080i012p09006. issn: 0148-0227. |
|
An oceanographic evaluation is carried out here of high-frequency (HF) Doppler radar measurements of surface currents made by the NOAA Wave Propagation Laboratory June 26 to August 4, 1983, at the western side of the Florida Straits in the area between Jupiter and West Palm Beach in the context of the Subtropical Atlantic Climate Studies. These current measurements are compared with direct current measurements made at various positions in the area covered by the radar, and investigated for their potential as transport indicator. Means and standard deviations of the downstream current component compared well with those from PEGASUS and subsurface moored current measuremens carried out in the northern part of the radar current field up to 35 km distance from the coast, but there seemed to exist a bias in the southern part of the current field measured by the radar, causing significant northward mean shear about 20 km offshore. Low-frequency current fluctuations from the radar currents and near-surface moored currents were coherent for the downstream but not the small cross-stream component. Mean downstream components in a center strip of the radar current field, where data quality was found to be best, were compared with Florida Current transports as determined by cable and by moored current measurements, but transport fluctuations were small during the measurement period which fell into the summer maximum of the Florida Current. Coherence with cable transport was significant at the meander time scale of 5 days, but a longer period transports burst of 3¿106 m3/s occurring during the time period was not identified in the surface current measurements. In summary, the HF radar as used in this application is useful to determine near-surface patterns of eddies and meanders but doubtful for derived quantities like energy fluxes and vorticity without additional calibration. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|