Wind-driven spin-up of the four-layer, quasi-isopycnic, eddy-resolving primitive equation model of Bleck and Boudra (1981) is compared with that obtained with a (numerically dissimilar) ''pure'' isopycnic coordinate model and an isobaric (i.e., quasi-Cartesian) coordinate model. In particular, the onset of hydrodynamic instabilities in the flow forced by a double-gyre wind stress pattern is studied. The spin-up processes associated with the isopycnic and quasi-isopycnic model are found to be similar, whereas the flow pattern produced by the quasi-Cartesian model deviates in the direction of Holland's (1978) and Holland and Lin's (1975a,b) two-layer solutions. |