Most studies of ocean acoustic tomography have assumed that little horizontal information is available from the many acoustic multipath travel times observed in a single vertical plane (slice) between source and receiver moorings. There is in fact significant small-scale information present in such data sets. We examine single verticle slice tomography in spectral terms, and show that the acoustic measurements resemble a high-pass filter, which is more sensitive to small scales (shorter than 100 km) than to longer scales, with the exception of the mean, which is well measured. The sensitivity extends to scales smaller than 10 km, in theory, although the level of the ocean energy spectrum is so low at these scales that even small data errors limit the measurement. We use analytical calculations supplemented by numerical simulations with realistic data sets to show that accurate reconstructions of the high wave number features are possible out to the limits of the parameterization (9.2-km wavelength) when the power spectrum of the ocean features is white or red, the total measurement error is 1 ms, and multiple receivers are used. The ultimate limit of spatial resolution may be smaller still, depending on array configuration, measurement errors, and the shape of the power spectrum. ¿ American Geophysical Union 1987 |