EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Kobayashi et al. 1989
Kobayashi, N., DeSilva, G.S. and Watson, K.D. (1989). Wave transformation and swash oscillation on gentle and steep slopes. Journal of Geophysical Research 94: doi: 10.1029/88JC03535. issn: 0148-0227.

The numerical model developed previously for coastal structures is slightly modified and applied to predict the wave transformation in the surf and swash zones on gentle slopes as well as the wave reflection and swash oscillation on relatively steep beaches. The numerical model is one-dimensional in the cross-shore direction and is based on the finite amplitude, shallow water equations, including the effect of bottom friction, which are solved in the time domain for the incident wave train specified as input at the seaward boundary of the computation located outside the breakpoint. The slight modification is related to the effect of the time-averaged current on the seaward boundary condition and improves the agreement between the computed and measured mean water levels on gentle slopes. The modified numerical model is compared with available small-scale test data for monochromatic waves spilling on gentle slopes as well as for monochromatic waves plunging and surging on a relatively steep slope. Additional comparisons are made with small-scale tests conducted using transient monochromatic and grouped waves on a 1:8 smooth slope with and without and idealized nearshore bar at the toe of the 1:8 slope. As a whole, the numerical model is shown to be capable of predicting both time-varying and time-averaged hydrodynamic quantities in the surf and swash zones on gentle as well as steep slopes. ¿ American Geophysical Union 1989

BACKGROUND DATA FILES

Abstract

Keywords
Oceanography, Physical, Surface waves and tides, Oceanography, General, Numerical modeling, Marine Geology and Geophysics, Littoral processes
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit