EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Elgar et al. 1990
Elgar, S., Freilich, M.H. and Guza, R.T. (1990). Model-data comparisons of moments of nonbreaking shoaling surface gravity waves. Journal of Geophysical Research 95: doi: 10.1029/90JC00963. issn: 0148-0227.

The predictions of linear and nonlinear (Boussinesq) shoaling wave models for nonbreaking unidirectional surface gravity waves are compared to field observations, with particular emphasis on quantities that may be important for cross-shore sediment transport. The extensive data sets were obtained on two natural beaches, span water depths between 1 and 10 m, and include incident wave power spectra with narrow, broad, and bimodal shapes. Significant wave heights varied between approximately 30 and 100 cm, and peak periods between approximately 8 and 18 s. The evolution of total variances of sea surface elevation, cross-shore velocity, and horizontal acceleration is modeled at least qualitatively well by both linear and nonlinear theories. Only the nonlinear theory predicts the increasingly asymmetric sea surface elevations and horizontal velocities (pitched-forward wave shapes) and the weaker variation of skewness (difference between crest and trough profiles) which are observed to occur during shoaling. The nonlinear theory also models qualitatively well the large skewed accelerations which occur during the passage of asymmetric waves. ¿ American Geophysical Union 1990

BACKGROUND DATA FILES

Abstract

Keywords
Oceanography, Physical, Surface waves and tides
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit