As a proxy for satellite (coastal zone color scanner) observations and concurrent measurements of primary production rates, data from 138 stations occupied seasonally durng 1967--1968 in the offshore, eastern tropical Pacific were analyzed in terms of six temporal groups and four current regimes. In multiple linear regressions on column production Pt, we found that simulated satellite pigment is generally weakly correlated, but sometimes not correlated with Pt, and that incident irradiance, sea surface temperature, nitrate, transparency, and depths of mixed layer or nitracline assume little or no importance. After a proxy for the light-saturated chlorophyll-specific photosynthetic rate pmax is added, the coefficient of determination (r2) ranges from 0.55 to 0.91 (median of 0.85) for the 10 cases. In stepwise multiple linear regressions the pmax proxy is the best predictor for Pt. Pt can be calculated fairly accurately (on the average, within 10--20%) from satellite pigment, the 10% light depth, and station values (but not from regional or seasonal means) of the pmax proxy; for individual stations the precision is 35--84% (median of 57% for the 10 groupings; p=0.05) of the means of observed values. At present, pmax cannot be estimated from space; in the data set it is not even highly correlated with irradiance, temperature, and nitrate at depth of occurrence. Therefore extant models for calculating Pt in this tropical ocean have inherent limits of accuracy as well as of precision owing to ignorance about a physiological parameter. ¿ American Geophysical Union 1990 |