EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Lavelle et al. 1992
Lavelle, J.W., Cowen, J.P. and Massoth, G.J. (1992). A model for the deposition of hydrothermal manganese near ridge crests. Journal of Geophysical Research 97: doi: 10.1029/92JC00406. issn: 0148-0227.

A two-stage scavenging model is used to describe the transport of hydrothermal Mn to the sediments adjacent to ridge crests. Dissolved Mn is hypothesized to be scavenged by slowly settling metal-depositing capsuled bacteria which, in turn, are incorporated into rapidly settling macroaggregates. Upon reaching the seafloor, the Mn is subject to resuspension in particulate form and to remobilization within the sediment column and release back into the water column as dissolved Mn. Measured Mn distributions in the vicinity of the southern Juan de Fuca Ridge and estimated values of process rate constants are used to limit the range of possible model outcomes. The results present a picture of water column distributions and fluxes of dissolved, fine particulate, and large-particle associated Mn in a plume advecting off axis. The model and best available parameter values suggest that more than 80% of the hydrothermal Mn is deposited within several hundred kilometers of the ridge crest, though dissolved Mn concentrations beyond that distance exceed background levels by many times. The residence time of hydrothermal Mn in the water column is of the order of several years. As off-axis component of advection of the order of 0.1--0.3 cm/s is needed to make similar the model and measured distributions of Mn depositing in the sediments. ¿ American Geophysical Union 1992

BACKGROUND DATA FILES

Abstract

Keywords
Oceanography, Biological and Chemical, General or miscellaneous, Marine Geology and Geophysics, Midocean ridge processes, Marine Geology and Geophysics, Sediment transport, Oceanography, Biological and Chemical, Geochemistry
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit