EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Jay & Musiak 1994
Jay, D.A. and Musiak, J.D. (1994). Particle trapping in estuarine tidal flows. Journal of Geophysical Research 99: doi: 10.1029/94JC00971. issn: 0148-0227.

Particle trapping in estuarine turbudity maxima (ETM) is caused primarily by convergent mean and/or tidal fluxes of sediment. The result is an approximately bell-shaped along-channel distribution of vertically integrated, tidal cycle mean suspended sediment concentration. Observations from the Columbia River estuary suggest that (1) strong two-layer or internal along-channel residual and overtide flows are generated by time-varying stratification and (2) correlations between the near-bed velocity and the suspended sediment fields at these frequencies are important in landward transport of sediment. A new spatially and temporally integrated form of the sediment conservation equation has been derived to analyze this trapping process. Time changes in tidally averaged sediment concentration between two estuarine cross sections can be shown to be related to the divergence of the seaward, river flow transport; the divergence of velocity shear-sediment stratification correlations for the mean flow and each tical constituent; and net erosion or deposition at the bed. Vertically integrated variables other than seaward river transport are absent from this integrated balance. Analysis of sediment fluxes using this balance supports the idea that internal residual and overtide circulations are primarily responsible for the landward sediment transport on the seaward side of ETM found near the upstream limits of salinity intrusion. The balance also shows that attempts to represent fluxes causing trapping of sediment in an ETM as a product of a time-mean, vertically integrated, along-channel gradient and a diffusitivity inevitably lead to the appearance of countergradient transport and thus a negative diffusivity on the seaward side of the ETM. This result occurs because the trapping process is inherently nonlinear and at least two-dimensional and because a one-dimensional representation is physically unrealistic. ¿ American Geophysical Union 1994

BACKGROUND DATA FILES

Abstract

Keywords
Oceanography, General, Estuarine processes, Marine Geology and Geophysics, Sediment transport, Oceanography, Physical, Surface waves and tides, Oceanography, Physical, Turbulence, diffusion, and mixing processes
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit