EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Mikolajewicz & Maier-Reimer 1994
Mikolajewicz, U. and Maier-Reimer, E. (1994). Mixed boundary conditions in ocean general circulation models and their influence on the stability of the model's conveyor belt. Journal of Geophysical Research 99: doi: 10.1029/94JC01989. issn: 0148-0227.

When driven under ''mixed boundary conditions,'' coarse resolution ocean general circulation models (OGCMs) generally show a high sensitivity of the present-day thermohaline circulation against perturbations. We will show that an alternative formulation of the boundary condition for temperature, a mixture of prescribed heat fluxes and additional restoring of the sea surface temperature to a climatological boundary temperature with a longer time constant, drastically alters the stability of the modes of the thermohaline circulation. The results from simulations with the Hamburg large-scale geostrophic OGCM indicate that the stability of the mode of the thermohaline circulation with formation of North Atlantic deepwater increases, if the damping of sea surface temperature anomalies is reduced, whereas the opposite is true for the mode without North Atlantic deep water formation. It turns out that the formulation of the temperature boundary condition also affects the variability of the model.

BACKGROUND DATA FILES

Abstract

Keywords
Oceanography, General, Numerical modeling, Oceanography, General, Climate and interannual variability
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit