EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Nevison et al. 1995
Nevison, C.D., Weiss, R.F. and Erickson, D.J. (1995). Global oceanic emissions of nitrous oxide. Journal of Geophysical Research 100: doi: 10.1029/95JC00684. issn: 0148-0227.

The global N2O flux from the ocean to the atmosphere is calculated based on more than 60,000 expedition measurements of the N2O anomaly in surface water. The expedition data are extrapolated globally and coupled to daily air-sea gas transfer coefficients modeled at 2.8¿¿2.8¿ resolution to estimate a global ocean source of about 4 (1.2--6.8) Tg N yr-1. The wide range of uncertainty in the source estimate arises mainly from uncertainties in the air-sea gas transfer coefficients and in the global extrapolation of the summertime-biased surface N2O data set. The strongest source is predicted from the 40--60¿S latitude band. Strong emissions also are predicted from the northern Pacific Ocean, the equatorial upwelling zone, and coastal upwelling zones occurring predominantly in the tropical northern hemisphere. High apparent oxygen utilization (AOU) at 100 m below the mixed layer is found to be correlated positively both to N2O production at depth and to the surface N2O anomaly. On the basis of these correlations, the expedition data are partitioned into two subsets associated with high and low AOU at depth. The zonally averaged monthly means in each subset are extrapolated to produce two latitude-by-month matrices in which monthly surface N2O is expressed as the deviation from the annual mean. Both matrices contain large uncertainties. The low-AOU matrix, which mainly includes surface N2O data from the North Atlantic and the subtropical gyres, suggests many regions with positive summer deviations and negative winter deviations, consistent with a seasonal cycle predominantly driven by seasonal heating and cooling of the surface ocean. The high-AOU subset, which includes the regions most important to the global N2O ocean source, suggests some regions with positive winter deviations and negative summer deviations, consistent with a seasonal cycle predominantly driven by wintertime mixing of surface water with N2O-rich deep water. Coupled seasonal changes in gas transfer coefficients and surface N2O in these important source regions could strongly influence the global ocean source. ¿ American Geophysical Union 1995

BACKGROUND DATA FILES

Abstract

Keywords
Oceanography, Physical, Air/sea interactions, Oceanography, Biological and Chemical, Biogeochemical cycles
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit