EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Lal et al. 1997
Lal, D., Jull, A.J.T., Burr, G.S. and Donahue, D.J. (1997). Measurements of in situ 14C concentrations in Greenland Ice Sheet Project 2 ice covering a 17-kyr time span: Implications to ice flow dynamics. Journal of Geophysical Research 102: doi: 10.1029/96JC02224. issn: 0148-0227.

We present results of measurements of 14C in CO and CO2 phases for selected Greenland Ice Sheet Project 2 firm and ice samples up to a depth of 1838 m (16.6 kyr B.P.). The results show that 14C in ice consists of both in situ-produced cosmogenic 14C, which can be either in the form of CO or CO2, and trapped atmospheric 14CO2. In agreement with our previous work on studies of 14C concentrations in Antarctic firm and ice samples and some GISP2 samples, we found that the cosmogenic in situ-produced 14C (from spallation of oxygen nuclei) is greater than the trapped atmospheric 14C component. Also, we can show the total 14C amounts in ice are consistent with an efficient retention of the in situ variety of 14C in older ice where we expect lower average temperatures at the time of formation. The firm samples appear to have lost much of the 14C, probably during storage. The ice accumulation rates are estimated after due corrections for the CO2 content of trapped air and secondary 14C production in ice during storage at altitude. These values are in good accord with the recent model estimates of Cutler et al. <1995>, except for two samples, at depths 1518.5 m (9740 years B.P.) and 1698.5 m (12,360 years B.P.). In the first case, the in situ 14C concentration is significantly higher than that predicted by either of the models, by a factor of about 2. In the second case, the estimate of Cutler et al. <1995> is a ~ 50% lower accumulation rate, but the 14C result is consistent with adjacent samples. A possible reason for the first discrepancy may be the decreased atmospheric pressure at that time at the site, as suggested by D. Raynaud et al. (unpublished manuscript, 1995). ¿ 1997 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Hydrology, Glaciology, Hydrology, Snow and ice, Interplanetary Physics, Cosmic rays, Meteorology and Atmospheric Dynamics, Paleoclimatology
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit