|
Detailed Reference Information |
Holland, M.M., Curry, J.A. and Schramm, J.L. (1997). Modeling the thermodynamics of a sea ice thickness distribution: 2. Sea ice/ocean interactions. Journal of Geophysical Research 102: doi: 10.1029/97JC01296. issn: 0148-0227. |
|
In this paper we examine the coupling of an ice thickness distribution model with an ocean mixed layer model. The annual cycle of the modeled mixed layer temperature, salinity, and depth are compared to observations from the drifting ice stations of the Arctic Ice Dynamics Joint Experiment (AIDJEX). The role of the ice thickness distribution in determining the ice/ocean coupling is examined. We find that the ice thickness distribution is important for the exchange of heat, salt, and fresh water between the ice and the ocean, especially with regard to the effects of thin, first-year ice. Several different parameterizations of the ice/ocean turbulent heat exchange are compared. The results indicate that the storage of heat in the ocean mixed layer is an important physical process for determining the annual average ice thickness. Double diffusion and the stabilizing effects of meltwater also impact the exchange of heat between the ocean and ice cover. Questions remain as to the relative importance of these processes and their accurate parameterization in ice/ocean coupled models. ¿ 1997 American Geophysical Union |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Oceanography, General, Arctic and Antarctic oceanography, Hydrology, Snow and ice, Information Related to Geographic Region, Arctic region |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|