EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Kneller et al. 1999
Kneller, B.C., Bennett, S.J. and McCaffrey, W.D. (1999). Velocity structure, turbulence and fluid stresses in experimental gravity currents. Journal of Geophysical Research 104: doi: 10.1029/1998JC900077. issn: 0148-0227.

Gravity currents are of considerable environmental and industrial importance as hazards and as agents of sediment transport, and the deposits of ancient turbidity currents form some significantly large hydrocarbon reservoirs. Prediction of the behavior of these currents and the nature and distribution of their deposits require an understanding of their turbulent structure. To this end, a series of experiments was conducted with turbulent, subcritical, brine underflows in a rectangular lock-exchange tank. Laser-Doppler anemometry was used to construct a two-dimensional picture of the velocity structure. The velocity maximum within the gravity current occurs at y/d≈0.2. The shape of the velocity profile is governed by the differing and interfering effects of the lower (rigid) and upper (diffuse) boundaries and can be approximated with the law of the wall up to the velocity maximum and a cumulative Gaussian distribution from the velocity maximum to the ambient interface. Mean motion within the head consists of a single large vortex and an overall motion of fluid away from the bed, and this largely undiluted fluid becomes rapidly mixed with ambient fluid in the wake region. The distribution of turbulence within the current is heterogeneous and controlled by the location of large eddies that dominate the turbulent energy spectrum and scale with flow thickness. Turbulent kinetic energy reaches a maximum in the shear layer at the upper boundary of the flow where the large eddies are generated and is at a minimum near the velocity maximum where fluid shear is low. ¿ 1999 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Oceanography, Physical, Sea level variations, Oceanography, Physical, El Nino, Oceanography, General, Equatorial oceanography, Oceanography, Biological and Chemical, Hydrothermal systems, Oceanography, General, Diurnal, seasonal, and annual cycles
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit