EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Grima et al. 1999
Grima, N., Bentamy, A., Katsaros, K., Quilfen, Y., Delecluse, P. and Levy, C. (1999). Sensitivity of an oceanic general circulation model forced by satellite wind stress fields. Journal of Geophysical Research 104: doi: 10.1029/1999JC900007. issn: 0148-0227.

Satellite wind and wind stress fields at the sea surface, derived from the scatterometers on European Remote Sensing satellites 1 and 2 (ERS-1 and ERS-2) are used to drive the ocean general circulation model (OGCM) OPA in the tropical oceans. The results of the impact of ERS winds are discussed in terms of the resulting thermocline, current structures, and sea level anomalies. Their adequacy is evaluated on the one hand by comparison with simulations forced by the Arpege-Climat model and on the other hand by comparison with measurements of the Tropical Atmosphere-Ocean (TAO) buoy network and of the TOPEX/Poseidon altimeter. Regarding annual mean values, the thermal and current responses of the OGCM forced by ERS winds are in good agreement with the TAO buoy observations, especially in the central and eastern Pacific Ocean. In these regions the South Equatorial Current, the Equatorial Undercurrent, and the thermocline features simulated by the OGCM forced by scatterometer wind fields are described. The impact of the ERS-1 winds is particularly significant to the description of the main oceanic variability. Compared to the TAO buoy observations, the high-frequency (a few weeks) and the low-frequency of the thermocline and zonal current variations are described. The correlation coefficients between the time series of the thermocline simulated by ERS winds and that observed by the TAO buoy network are highly significant; their mean value is 0.73, over the whole basin width, while it is 0.58 between Arpege model simulation and buoy observations. At the equator the time series of the zonal current simulated by the ERS winds, at three locations (110 ¿W, 140 ¿W, and 165 ¿E) and at two depths, are compared to the TAO current meter and acoustic Doppler current profiler (ADCP) measurements. The mean value of the significant correlation coefficients computed with the in situ measurements is 0.72 for ERS, while it is 0.51 for the Arpege-Climat model. Thus ERS wind fields through the OGCM generate more realistic current variations than those obtained with Arpege climate winds, and they are particularly efficient in capturing abrupt changes (wind bursts) which may be important regarding ocean dynamics. ¿ 1999 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Oceanography, Physical, Air/sea interactions, Oceanography, Physical, El Nino, Oceanography, General, Equatorial oceanography, Oceanography, General, Remote sensing and electromagnetic processes
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit