EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Tegen & Lacis 1996
Tegen, I. and Lacis, A.A. (1996). Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. Journal of Geophysical Research 101: doi: 10.1029/95JD03610. issn: 0148-0227.

The radiative parameters of mineral aerosols are strongly dependent on particle size. Therefore explicit modeling of particle size distribution is needed to calculate the radiative effects and the climate impact of mineral dust. We describe a parameterization of the global mineral aerosol size distribution in a transport model using eight size classes between 0.1 and 10 μm. The model prescribes the initial size distribution using soil texture data and aerosol size measurements close to the ground. During transport, the size distribution changes as larger particles settle out faster than smaller particles. Results of Mie scattering calculations of radiative parameters (extinction efficiency, single scattering albedo, asymmetry parameter) of mineral dust are shown at wavelengths between 0.3 and 30 μm for effective particle radii between 0.1 and 10 μm. Also included are radiative properties (reflection, absorption, transmission) calculated for a dust optical thickness of 0.1. Preliminary studies with the Goddard Institute for Space Studies (GISS) general circulation model (GCM), using two particle size modes, show regional changes in radiative flux at the top of the atmosphere as large as +15 W m-2 at solar and +5 W m-2 at thermal wavelengths in the annual mean, indicating that dust forcing is an important factor in the global radiation budget. ¿ American Geophysical Union 1996

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Aerosols and particles (0345, 4801), Atmospheric Composition and Structure, Transmission and scattering of radiation, Atmospheric Composition and Structure, Troposphere—constituent transport and chemistry
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit